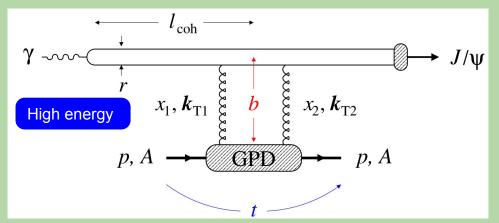
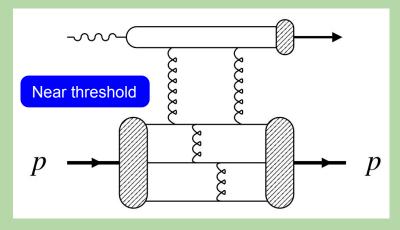


J/ψ photoproduction near threshold at CLAS12


Rafayel Paremuzyan, University of New Hampshire


Next-generation GPD studies with exclusive meson production at EIC June 4-6 2018, CFNS Stony Brook

J/ψ photoproduction

Quark content of J/ψ : $c\overline{c}$

There are no $c\bar{c}$ pairs in the nucleon, so the production goes through gluon exchange

Two gluon exchange mechanism, Small *t*Probes gluonic GPDs

Confirmed in HERA experiments

H1 <u>arXiv:hep-ex/0510016</u>, Zeus <u>arXiv:hep-ex/0404008</u>

It is expected the production mechanism to be changed.

|t_{min}| = 2.23GeV² @ threshold All three quarks share the large momentum transfer

VDM picture of J/ ψ photoproduction

$$\frac{d\sigma_{\gamma N \to VN}}{dt} = \mathcal{K} \frac{3\Gamma(V \to e^- e^+)}{\alpha m_V} \frac{d\sigma_{VN \to VN}}{dt}$$
$$m_c \approx 1.5 \ GeV \quad r_\perp \approx \frac{1}{m_c} = 0.13 \ fm$$

Close to production threshold $E_{y} \approx 10 \text{ GeV}$

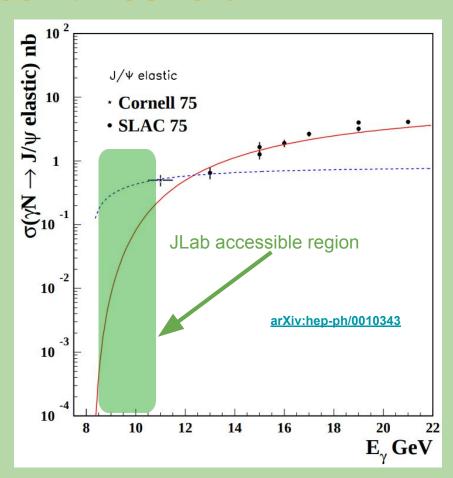
$$l_c = \frac{2E_{\gamma}}{4m_c^2} \approx 0.4 \ fm \quad b \approx \frac{1}{\sqrt{-t}} \approx 0.2 \ fm$$

$$l_F \approx \frac{2E_{J/}}{2m_c(m_{\psi'} - m_{J/\psi})} \approx 1 - 2 \ fm$$

Photoproduction near threshold creates favorable conditions for studying J/ ψ elastic scattering

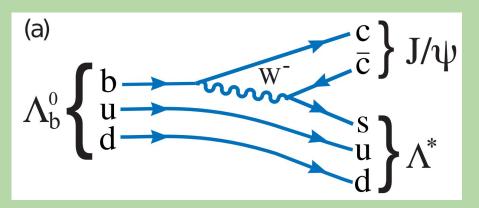
Cross-section near threshold

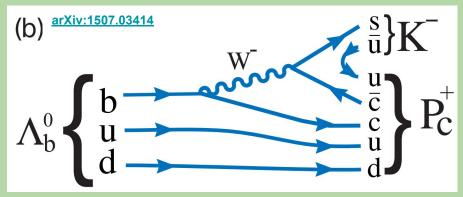
$$\frac{d\sigma}{dt} = N_{2g}\nu \frac{(1-x)^2}{R^2 \mathcal{M}^2} F_{2g}^2(t)(s-m_p^2)^2$$


$$\frac{d\sigma}{dt} = N_{3g}\nu \frac{(1-x)^0}{R^4 \mathcal{M}^4} F_{3g}^2(t)(s-m_p^2)^2$$

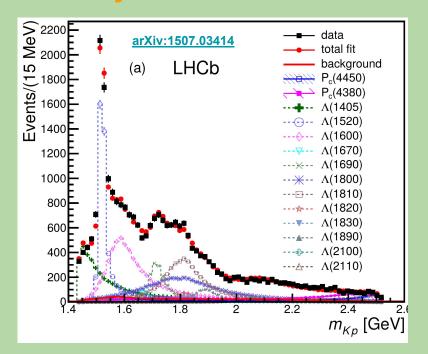
x is defined as
$$x = \frac{2M_p M_{J/\psi} + M_{J/\psi}^2}{(s - M_m)^2}$$

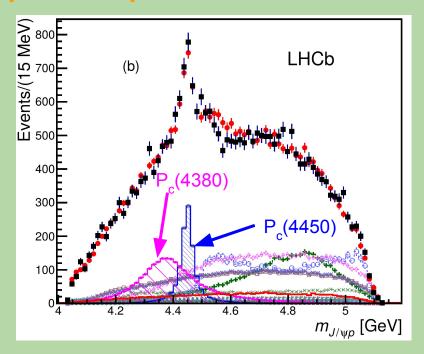
There is no published data below E_y < 11 GeV


Precision measurements are needed in this region


JLab is in a good position to explore the near threshold region

LHCb: observation of two resonance states referred as charmonium pentaquarks


$$\Lambda_b^0 \to J/\psi K^- p$$



Amplitude analysis of J/ ψ K⁻p final state with inclusion of all know $\Lambda^* \to K$ ⁻p decays was not able to describe the data.

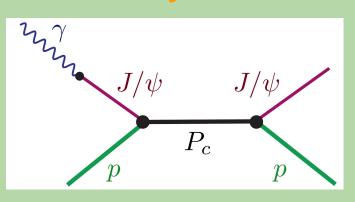
Data was described by inclusion of two " $c\bar{c}uud$ " exotic states.

Resonances have 9σ (Pc(4380)) and 12σ (Pc(4450)) significance

 $P_c(4380)$ M = 4380±8±29 MeV Γ = 205±18±86 MeV $P_c(4450)$ M = 4449.5±1.7±2.5 MeV Γ = 49±5±19 MeV

It has triggered multiple papers arguing the nature of these two structures

Hadronic molecule: charmed baryon with anti-charmed meson ΣD* arXiv:1507.03704


Colored three quark and quark-antiquark (Non-molecule) arXiv:1507.04694

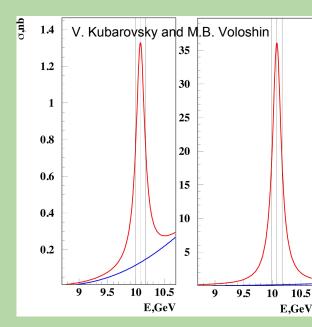
No resonance at all, just a kinematic effect (threshold effect, triangle singularity) arXiv:1507.06552, arXiv:1507.04950

Clearly, independent measurements are needed with different production mode

It was suggested to search for P_c states in the J/ ψ photoproduction on the proton arXiv:1508.00339, arXiv:1508.01496, arXiv:1508.00888

s channel resonance in the $\gamma+p\rightarrow P_c\rightarrow J/\psi+p$ reaction

$$\sigma(\mathbf{\gamma} + \mathbf{p} \rightarrow \mathbf{Pc} \rightarrow \mathbf{J/\psi} + \mathbf{p})$$


$$\sigma(W) = \frac{2J+1}{4} \frac{\Gamma^2/4}{(W-M_{P_c}^2) + \Gamma^2/4} \mathcal{BR}(P_c \rightarrow \gamma P) \mathcal{BR}(P_c \rightarrow J/\psi P)$$

$$1.5\mu bn < \frac{\sigma_{max}(\gamma + p \to P_c(4380) \to J/\psi \ p)}{\mathcal{BR}^2[P_c(4380) \to J/\psi \ p]} < 47\mu bn$$

$$12\mu bn < \frac{\sigma_{max}(\gamma + p \to P_c(4450) \to J/\psi \ p)}{\mathcal{BR}^2[P_c(4450) \to J/\psi \ p]} < 360\mu bn$$

Min and max limits come from theoretical Uncertainty of partial wave

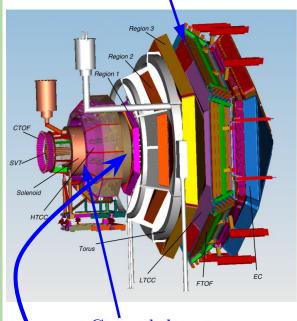
CLAS12 (along with other JLab experiments) are in the good position to probe this channel

Assuming BR($P_c(4450)J/\psi+p$) = 1%

CLAS12 experiments on J/ψ

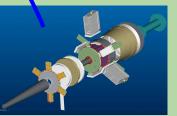
E12-12-001: Timelike Compton Scattering and J/ ψ photoproduction on the proton in e⁻e⁺ pair production with CLAS12 at 11 GeV. Has been approved in 2012, and granted 120 PAC days

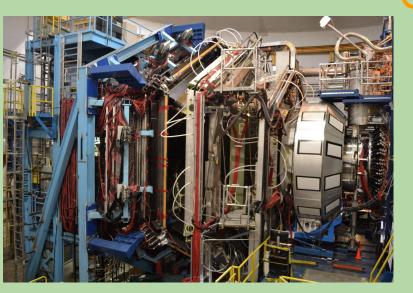
The LHCb pentaquark paper triggered a new proposal


E12-12-001A: Near threshold J/ ψ photoproduction and study of LHCb pentaquarks with CLAS12.

- Includes J/ψ→μ decay mode

 CLAS12 has no muon detector however, using ECal we will achieve ≈×6 suppression of π-π+ pairs.
- Study charmed pentaquarks P_c(4380) and P_c(4450)


CLAS12 design parameters

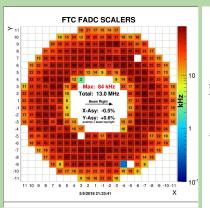

Parameters	Forward Detector	Central Detector		
Charged tracks:				
polar angular range (θ)	5° to 35°	35° to 125°		
resolution:				
polar angle $(\delta\theta)$	< 1 mr	$< 10 \mathrm{\ mr}$ to $20 \mathrm{\ mr}$		
azimuthal angle $(\delta\phi)$	< 4 mr	< 5 mr		
momentum $(\delta p/p)$	< 1% at 5 GeV/c	<5% at 1.5 GeV/c		
Neutral particles:				
angular range (θ)	5° to 40°	40° to 125° (neutrons)		
angular resolution $(\delta\theta)$	< 4 mr	< 10 mr		
Energy resolution	$< 0.1/\sqrt(E)$	< 5%		
PID:				
e/π	full momentum range	NA		
π/p	full momentum range	$< 1.25~{ m GeV/c}$		
K/π	< 3 GeV/c	$< 0.65 \; \mathrm{GeV/c}$		
K/p	< 4 GeV/c	< 1 GeV/c		

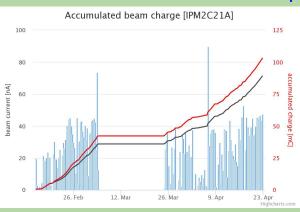
Central detector

Forward tagger non-baseline equipment

Expected Performance	VALUE		
Horizontal angular coverage	2.5° to 4.5°		
EM shower energy range	E _{max} –E _{min} = (0.5 – 8.0) GeV		
Energy resolution	$\sigma_{E}/E \le 2\%/VE(GeV) \oplus 1\%$		
Angular resolution	$\sigma_{\vartheta}/\vartheta \leq 1.5 \%, \sigma_{\varphi} \leq 2^{\circ}$		
Time resolution	≤300 ps		

CLAS12


Commissioning: Dec 2017, Jan 2018


Torus and solenoid achieved full designed currents

All baseline and non-baseline detectors operational

Three main triggers + >30 prescaled diagnostic triggers. Main trigs: e-, MesonX and J/ψ (muon trigger)

Beam polarization: ≈ 85%

- Beam energy: 10.6 GeV
- 50 nA current.
- 79 mC (e- neg.pol.) + 22 mC (e+ pos.pol.)
- Accumulated charge corresponds to ≈
- 10% RGA expected full luminosity.

CLAS12

Commissioning: Dec 2017, Jan 2018

Torus and solenoid achieved full field

Calibrations are in progress

Full cooking will start in mid. July

No CLAS12 data will be shown today

Next Run: Aug 22 to Nov 15, 2018

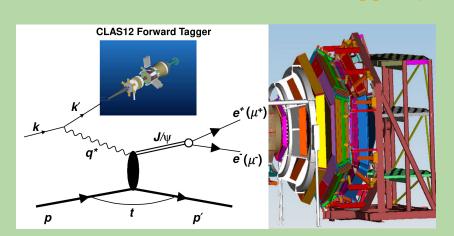
Accumulated charge corresponds to ≈
 10% RGA expected full luminosity.

perational

ostic muon

e+ pos.pol.)

Untagged photoproduction


Events with Q²~0 will be selected as a candidate for quasi-real photoproduction events

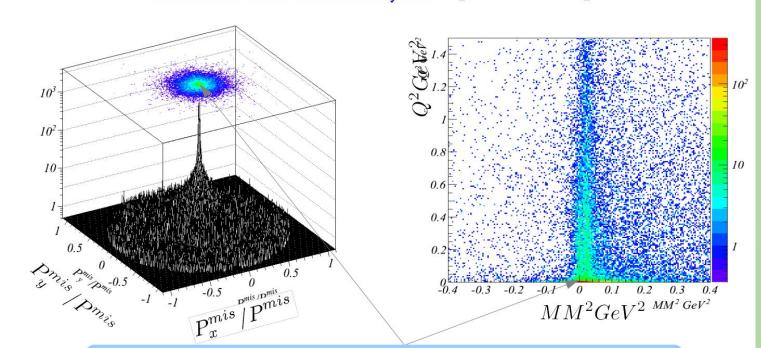
In the electroproduction of lepton pairs there are two electrons in the final state

The final state to be analyzed $ep \rightarrow e^-e^+pX$

From pair production $ep \rightarrow e^-e^+pX$ Beam electron

Tagged photoproduction

- -Beam electron is detected in the Forward tagger
- -Different combinations of I⁻I⁺p will be detected in CLAS12 forward detector
- Low rate, however detecting only p and/or J/ψ products will allow tag the reaction.

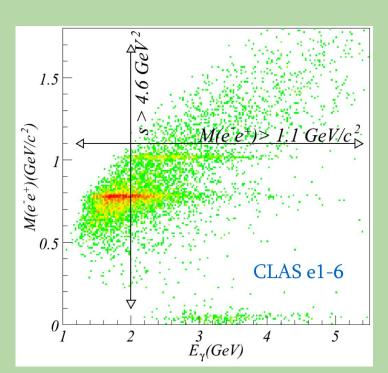

Untagged photoproduction

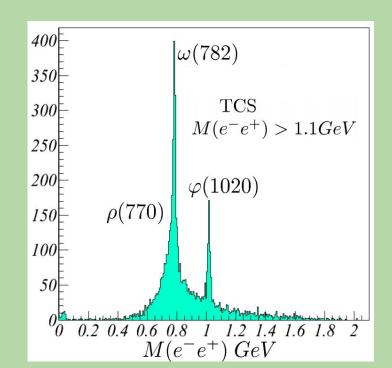
Events with Q²~0 will be selected as a candidate for quasi-real photoproduction events

From pair production there a NOTE: while CLAS12 has no muon detector, The firefor J/ψ analysis, EC will be used to select $\mu^$ ectron μ^{+} pairs, since $\pi^{-}\pi^{+}$ pairs will contribute only to the background, moreover PCal/EC will ward allow to suppress by ≈×6 e⁺ (μ⁺) Different combinations of I⁻I⁺p will be detected in CLAS12 forward detector

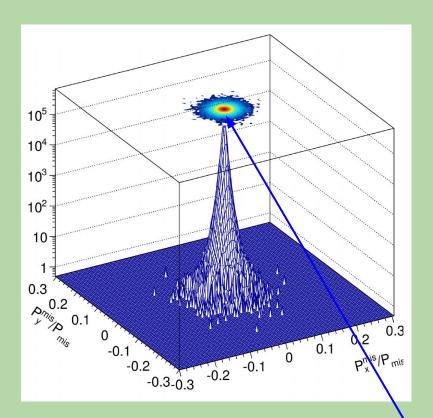
CLAS E1-6 data: selection of quasi-real photoproduction events

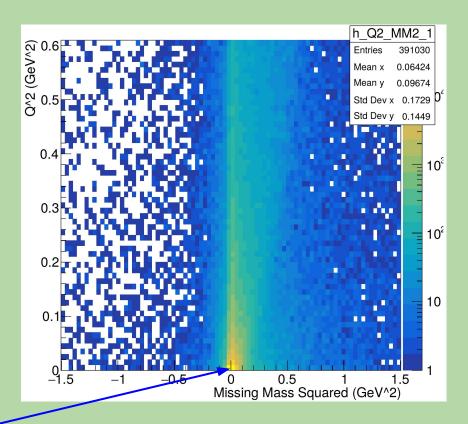
The final state to be analyzed $ep \rightarrow e^-e^+pX$

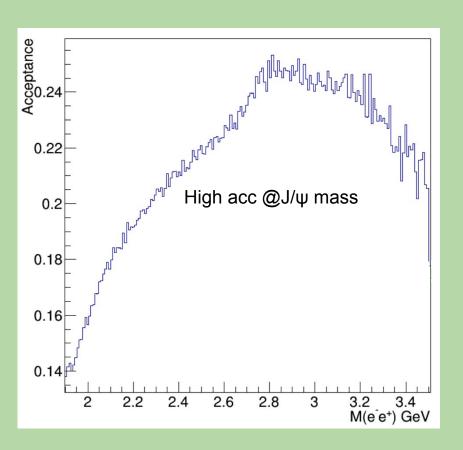


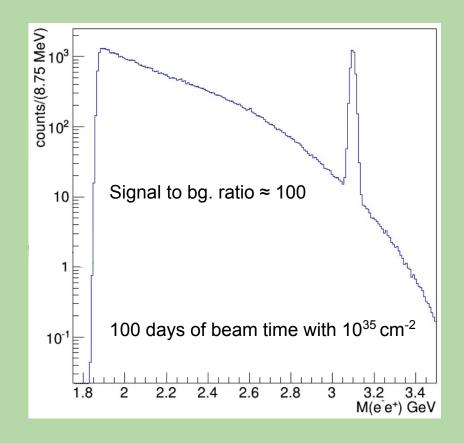

X is identified as a beam electron scattered at 0 degree $Q^2 < 0.01 GeV^2 \ |M_x|^2 < 0.1 GeV^2$

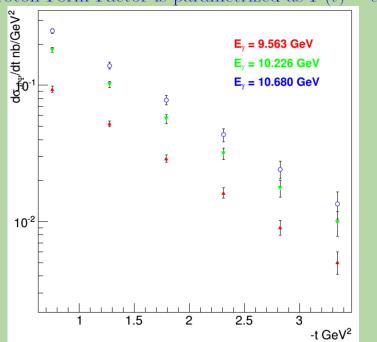
Invariant mass distribution from CLAS e1-6 data

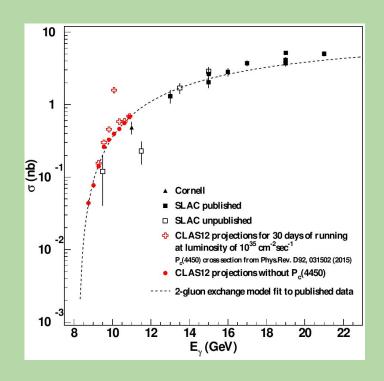

 ω and ϕ peaks are clearly visible


M > 1.1 GeV was selected for TCS analysis




Simulations: untagged photoproduction


Acceptance and expected M(e-e+) distribution



CLAS12 expected results

Proton Form Factor is parametrized as $F(t) = e^{-1.13t}$

About 45 J/ ψ per day according to 2 gluon exchange mechanism Expected number of charmed pentaquarks 98 per day

Summary

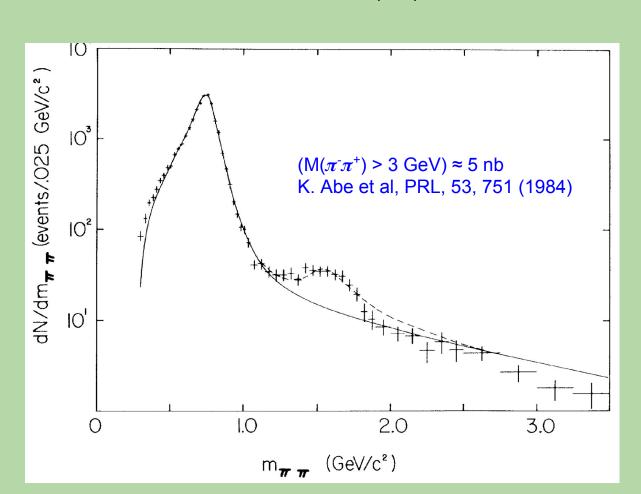
12 GeV JLab upgrade crosses the J/ ψ production threshold

Measurements of t and W dependence of J/ψ production cross section will be important input to different proposed J/ψ production mechanism near the threshold.

Has potential to detect and study P_c pentaquark(s)

CLAS12 commissioned successfully in Dec,2017 - Jan 2018, and all detector components met design requirements.

1st CLAS12 RG-A run recently completed. Preliminary results are expected soon

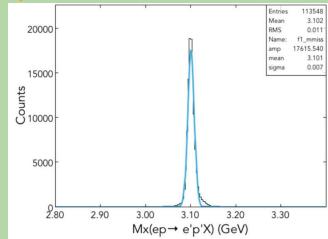

Next part of RG-A will start Aug 2018

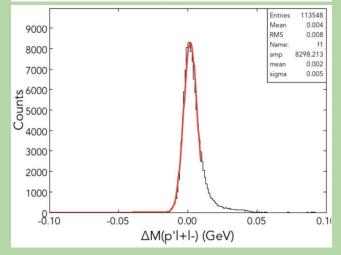
Backup Slides

Triggers

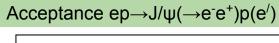
М	enu CLAS12	2 VTP Trig	igger 05/05/2018 10		.0:13:42	
В	eam Current (nA) -Elec 53.7 2C21 1-	tron Alarms 6: NO ALARM			ne	
	51.1 FCup		1 o loicitairee.	IS I	94.3 %	
	3212 , 335	Totals (Hz) 2462528	13685	Pulser	92.9 %	
Bit	Description	Raw (Hz)	Prescaled (Hz)	Fraction (%)	Prescale	In Totals
	Electron - OR of 1-6	6271	6271	46.4		
	Sector 1	905	905			
2	Sector 2	860	860			
3	Sector 3	1148	1148			
4	Sector 4	1295	1295			
	Sector 5	1170	1170			
6	Sector 6	935	935			
	Elctron OR no DC >300Me	v 7540	228	1.7		
8	PCALxECAL>10MeV	318527	155	1.2	12	
13	DCxFT0FxPCUxPCAL S1	57009	3	0.0	15	
14	DCxFT0FxPCUxPCAL S2	65115	4	0.0	15	
15	DCxFT0FxPCUxPCAL S3	64594	4	0.0	15	
16	DCxFT0FxPCUxPCAL S4	68297	4	0.0	15	
17	DCxFT0FxPCUxPCAL S5	67585	4	0.0	15	
18	DCxFT0FxPCUxPCAL S6	63610	4	0.0	15	
19	FTOFxPCALxECAL 1-4	839	839	6.2		
20	FTOFxPCALxECAL 2-5	842	842	6.2		
21	FTOFxPCALxECAL 3-6	837	837	6.2		
24	FTxHDxFT0FxPCALxCT0F	14076	427	3.2		
25	FTxHDx(FT0FxPCAL)^2	3645	3645	27.0		
26	FT 2 clusters>500MeV	7045	213	1.6		
27	FT > 100 Me∨	1652002	101	0.7	15	
31	Pulser	100	100	0.7		

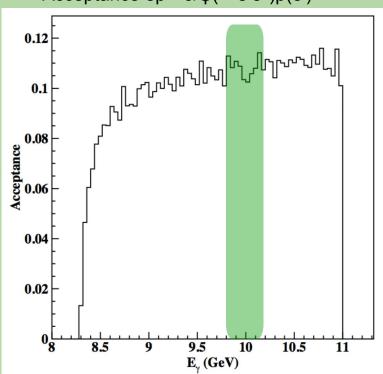
Pion pair production cross section

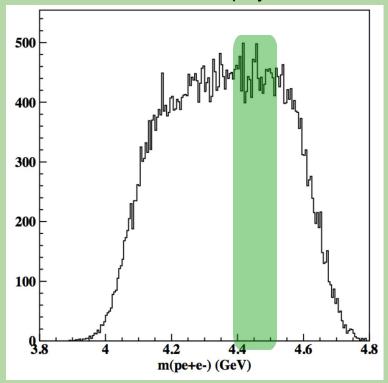

Simulations: Tagged photoproduction


Photon flux is ×10 smaller

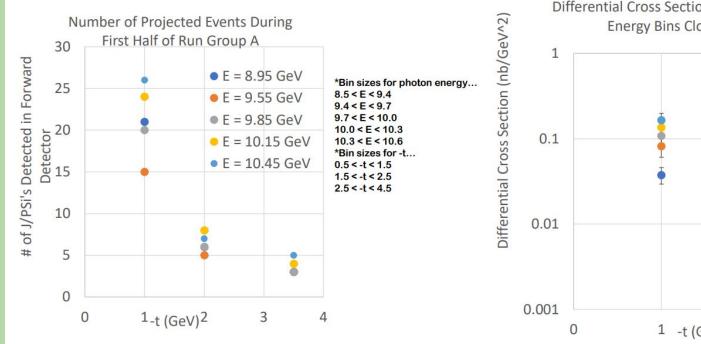
Very good mass resolution

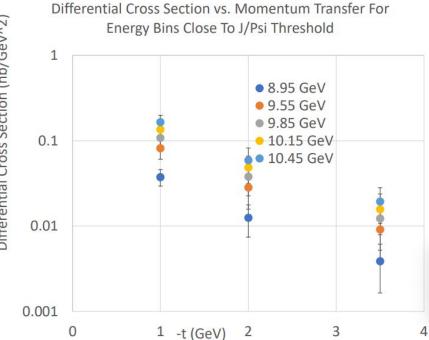

Better W resolution


Better acceptance, Detecting p, and/or J/ψ products (e, μ pairs) will allow tag the reaction.

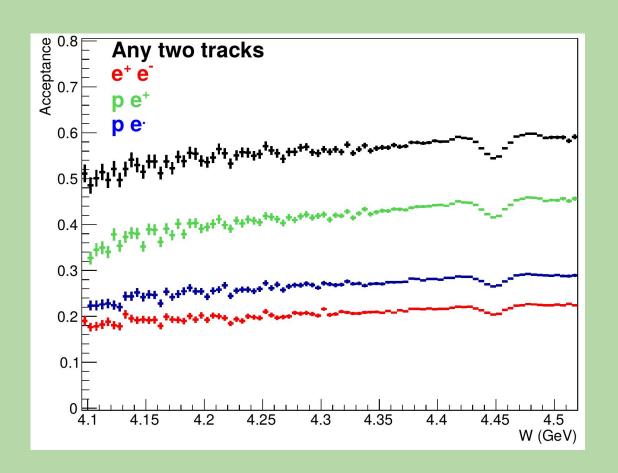


Kinematic coverage




Invariant mass of e⁻e⁺p system

P_c pentaquarks are well inside the acceptance region


Projections for J/ψ from RG-A Spring 2018 Run

*A total of 184 J/Psi events for the time period corresponding to the first half of Run Group A are projected based off acceptances from simulation and tracking efficiency from data

Acceptance with tagged photoproduction

